SIMO metaheuristic HERO optimization algorithm.
Initialize with arameters:
repeats=10
initial_solutions=100
maximum_iterations=100
Initialize optimizer:
>>> epsilon = 0.00001
>>> from simo.optimization.hero import HERO
>>> execfile('optimization/test/mocks4optimizer.py')
>>> chart_path = 'optimization/test'
>>> hero = HERO(logger, logname, taskdef, simdbin, simdbout, False, False,
... False, chart_path, True, 'test', True,
... keyword1='test-kw')
Called Logger.log_message(
'optimization-test',
'ERROR',
'Parameter "repeats" missing!')
Called Logger.log_message(
'optimization-test',
'ERROR',
'Parameter "initial_solutions" missing!')
Called Logger.log_message(
'optimization-test',
'ERROR',
'Parameter "maximum_iterations" missing!')
>>> hero = HERO(logger, logname, taskdef, simdbin, simdbout, False, False,
... False, chart_path, True, 'test', True,
... repeats=2,
... initial_solutions=3,
... maximum_iterations=2)
Run HERO optimization algorithm
Run HERO algorithm for a single iteration/repeat
>>> hero._stat_logger = ologger # replace stat logger with a mock
>>> hero._data = omatrix2 # replace data handler with another mock
>>> hero._analyze_data()
Called OMatrix.analyze_data(
<Mock ... SimInputDB>,
<bound method HERO._add_info of
<simo.optimization.hero.HERO object at ...>>)
True
>>> hero.set_data(0)
Called OMatrix.construct_data(0)
True
>>> hero._run_HERO()
Called OMatrix.solution_feasibility(array([0, 0, 0, 0, 0]))
Called OMatrix.solution_utility(array([0, 0, 0, 0, 0]))
Called OMatrix.compare_utilities(None, 1.0)
Called OMatrix.solution_feasibility(array([1, 0, 0, 0, 0]))
Called OMatrix.solution_utility(array([1, 0, 0, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 0, 0, 0, 0]))
Called OMatrix.solution_utility(array([1, 0, 0, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 2, 0, 0, 0]))
Called OMatrix.solution_utility(array([1, 2, 0, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 3, 0, 0, 0]))
Called OMatrix.solution_utility(array([1, 3, 0, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 4, 0, 0, 0]))
Called OMatrix.solution_utility(array([1, 4, 0, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 0, 0, 0]))
Called OMatrix.solution_utility(array([1, 5, 0, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 0, 0, 0]))
Called OMatrix.solution_utility(array([1, 5, 0, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 1, 0, 0]))
Called OMatrix.solution_utility(array([1, 5, 1, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 0, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 0, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 1, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 1, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 2, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 2, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OLogger.add_round(array([1, 5, 2, 3, 0]), 1.0, 1.0)
Called OMatrix.solution_feasibility(array([0, 5, 2, 3, 0]))
Called OMatrix.solution_utility(array([0, 5, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 0, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 0, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 2, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 2, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 3, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 3, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 4, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 4, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 0, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 0, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 1, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 1, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 0, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 0, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 1, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 1, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 2, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 2, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OMatrix.solution_feasibility(array([1, 5, 2, 3, 0]))
Called OMatrix.solution_utility(array([1, 5, 2, 3, 0]))
Called OMatrix.compare_utilities(1.0, 1.0)
Called OLogger.add_round(array([1, 5, 2, 3, 0]), 1.0, 1.0)